Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.444
Filtrar
1.
Biomed Mater ; 19(3)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38626777

RESUMO

This study developed a probe Fe3O4-Cy5.5-trastuzumab with fluorescence and magnetic resonance imaging functions that can target breast cancer with high HER2 expression, aiming to provide a new theoretical method for the diagnosis of early breast cancer. Fe3O4-Cy5.5-trastuzumab nanoparticles were combined with Fe3O4for T2imaging and Cy5.5 for near-infrared imaging, and coupled with trastuzumab for HER2 targeting. We characterized the nanoparticles used transmission electron microscopy, hydration particle size, Zeta potential, UV and Fourier transform infrared spectroscopy, and examined its magnetism, fluorescence, and relaxation rate related properties. CCK-8 and blood biochemistry analysis evaluated the biosafety and stability of the nanoparticles, and validated the targeting ability of Fe3O4-Cy5.5 trastuzumab nanoparticles throughin vitroandin vivocell and animal experiments. Characterization results showed the successful synthesis of Fe3O4-Cy5.5-trastuzumab nanoparticles with a diameter of 93.72 ± 6.34 nm. The nanoparticles showed a T2relaxation rate 42.29 mM-1s-1, magnetic saturation strength of 27.58 emg g-1. Laser confocal and flow cytometry uptake assay showed that the nanoparticles could effectively target HER2 expressed by breast cancer cells. As indicated byin vitroandin vivostudies, Fe3O4-Cy5.5-trastuzumab were specifically taken up and effectively aggregated to tumour regions with prominent NIRF/MR imaging properties. CCK-8, blood biochemical analysis and histological results suggested Fe3O4-Cy5.5-trastuzumab that exhibited low toxicity to major organs and goodin vivobiocompatibility. The prepared Fe3O4-Cy5.5-trastuzumab exhibited excellent targeting, NIRF/MR imaging performance. It is expected to serve as a safe and effective diagnostic method that lays a theoretical basis for the effective diagnosis of early breast cancer. This study successfully prepared a kind of nanoparticles with near-infrared fluorescence imaging and T2imaging properties, which is expected to serve as a new theory and strategy for early detection of breast cancer.


Assuntos
Neoplasias da Mama , Carbocianinas , Imageamento por Ressonância Magnética , Receptor ErbB-2 , Trastuzumab , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Trastuzumab/química , Feminino , Animais , Humanos , Imageamento por Ressonância Magnética/métodos , Receptor ErbB-2/metabolismo , Carbocianinas/química , Camundongos , Linhagem Celular Tumoral , Nanopartículas de Magnetita/química , Camundongos Nus , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Meios de Contraste/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Nanobiotechnology ; 22(1): 162, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594700

RESUMO

To overcome the problems of commercial magnetic resonance imaging (MRI) contrast agents (CAs) (i.e., small molecule Gd chelates), we have proposed a new concept of Gd macrochelates based on the coordination of Gd3+ and macromolecules, e.g., poly(acrylic acid) (PAA). To further decrease the r2/r1 ratio of the reported Gd macrochelates that is an important factor for T1 imaging, in this study, a superior macromolecule hydrolyzed polymaleic anhydride (HPMA) was found to coordinate Gd3+. The synthesis conditions were optimized and the generated Gd-HPMA macrochelate was systematically characterized. The obtained Gd-HPMA29 synthesized in a 100 L of reactor has a r1 value of 16.35 mM-1 s-1 and r2/r1 ratio of 2.05 at 7.0 T, a high Gd yield of 92.7% and a high product weight (1074 g), which demonstrates the feasibility of kilogram scale facile synthesis. After optimization of excipients and sterilization at a high temperature, the obtained Gd-HPMA30 formulation has a pH value of 7.97, osmolality of 691 mOsmol/kg water, density of 1.145 g/mL, and viscosity of 2.2 cP at 20 â„ƒ or 1.8 cP at 37 â„ƒ, which meet all specifications and physicochemical criteria for clinical injections indicating the immense potential for clinical applications.


Assuntos
Meios de Contraste , Anidridos Maleicos , Metacrilatos , Polímeros , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos
3.
Artif Cells Nanomed Biotechnol ; 52(1): 218-228, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38646876

RESUMO

This study prepared and evaluated polymeric polybutylcyanoacrylate (PBCA) nanoparticles (NPs) that can be used as a new agent for contrast-enhanced intravascular ultrasound (IVUS) imaging with drug delivery capacity. The nanoformulation was successfully developed using suspension polymerisation and characterised in terms of size, size distribution, zeta potential, morphology, stability, toxicity effects, imaging effects and drug release study. The results showed that the nanoparticles were round and hollow, with a particle diameter of 215.8 ± 25.3 nm and a zeta potential of -22.2 ± 4.1 mV. In vitro experiments, the nanoparticles were safe, non-toxic, and stable in nature with the capacity to carry and release drug (ant-miR-126). Moreover, the nanoparticles can match the high-frequency probe of commercially IVUS as a contrast agent to improve the resolution of imaging (the mean echo intensity ratio in the vascular wall increased significantly from 10.89 ± 1.10 at baseline, to 24.51 ± 1.91 during injection and 43.70 ± 0.88 after injection, respectively p < .0001). Overall, a new nano agent with drug-carrying capacity was prepared, which can be used in combination with IVUS for simultaneous diagnosis and targeted therapy of coronary atherosclerosis.


Assuntos
Meios de Contraste , Portadores de Fármacos , Embucrilato , Nanopartículas , Nanopartículas/química , Meios de Contraste/química , Embucrilato/química , Portadores de Fármacos/química , Animais , Ultrassonografia de Intervenção/métodos , Humanos , Liberação Controlada de Fármacos
4.
J Mater Chem B ; 12(13): 3273-3281, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38469725

RESUMO

Superoxide, an anionic dioxygen molecule, plays a crucial role in redox regulation within the body but is implicated in various pathological conditions when produced excessively. Efforts to develop superoxide detection strategies have led to the exploration of organic-based contrast agents for magnetic resonance imaging (MRI). This study compares the effectiveness of two such agents, nTMV-TEMPO and kTMV-TEMPO, for detecting superoxide in a mouse liver model with lipopolysaccharide (LPS)-induced inflammation. The study demonstrates that kTMV-TEMPO, with a strategically positioned lysine residue for TEMPO attachment, outperforms nTMV-TEMPO as an MRI contrast agent. The enhanced sensitivity of kTMV-TEMPO is attributed to its more exposed TEMPO attachment site, facilitating stronger interactions with water protons and superoxide radicals. EPR kinetics experiments confirm kTMV-TEMPO's faster oxidation and reduction rates, making it a promising sensor for superoxide in inflamed liver tissue. In vivo experiments using healthy and LPS-induced inflamed mice reveal that reduced kTMV-TEMPO remains MRI-inactive in healthy mice but becomes MRI-active in inflamed livers. The contrast enhancement in inflamed livers is substantial, validating the potential of kTMV-TEMPO for detecting superoxide in vivo. This research underscores the importance of optimizing contrast agents for in vivo imaging applications. The enhanced sensitivity and biocompatibility of kTMV-TEMPO make it a promising candidate for further studies in the realm of medical imaging, particularly in the context of monitoring oxidative stress-related diseases.


Assuntos
Superóxidos , Vírus do Mosaico do Tabaco , Camundongos , Animais , Meios de Contraste/química , Lipopolissacarídeos , Imageamento por Ressonância Magnética/métodos , Fígado
5.
Phys Med Biol ; 69(9)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38537294

RESUMO

Objective. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a sensitive tool for assessing breast cancer by analyzing tumor blood flow, but it requires gadolinium-based contrast agents, which carry risks such as brain retention and astrocyte migration. Contrast-free MRI is thus preferable for patients with renal impairment or who are pregnant. This study aimed to investigate the feasibility of generating contrast-enhanced MR images from precontrast images and to evaluate the potential use of synthetic images in diagnosing breast cancer.Approach. This retrospective study included 322 women with invasive breast cancer who underwent preoperative DCE-MRI. A generative adversarial network (GAN) based postcontrast image synthesis (GANPIS) model with perceptual loss was proposed to generate contrast-enhanced MR images from precontrast images. The quality of the synthesized images was evaluated using the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The diagnostic performance of the generated images was assessed using a convolutional neural network to predict Ki-67, luminal A and histological grade with the area under the receiver operating characteristic curve (AUC). The patients were divided into training (n= 200), validation (n= 60), and testing sets (n= 62).Main results. Quantitative analysis revealed strong agreement between the generated and real postcontrast images in the test set, with PSNR and SSIM values of 36.210 ± 2.670 and 0.988 ± 0.006, respectively. The generated postcontrast images achieved AUCs of 0.918 ± 0.018, 0.842 ± 0.028 and 0.815 ± 0.019 for predicting the Ki-67 expression level, histological grade, and luminal A subtype, respectively. These results showed a significant improvement compared to the use of precontrast images alone, which achieved AUCs of 0.764 ± 0.031, 0.741 ± 0.035, and 0.797 ± 0.021, respectively.Significance. This study proposed a GAN-based MR image synthesis method for breast cancer that aims to generate postcontrast images from precontrast images, allowing the use of contrast-free images to simulate kinetic features for improved diagnosis.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Estudos Retrospectivos , Antígeno Ki-67 , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química
6.
Anal Chem ; 96(11): 4394-4401, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451935

RESUMO

Noninvasive monitoring of cancer metastasis is essential to improving clinical outcomes. Molecular MRI (mMRI) is a special implementation of noninvasive molecular imaging that promises to offer a powerful means for early detection and analysis of pathological states of cancer by tracking molecular markers. However, this is often hindered by the challenging issue of obtaining transformable mMRI contrast agents with high sensitivity, specificity, and broad applicability, given the high tumor heterogeneity and complex metastatic features. Herein, we present a dual-receptor targeted, multivalent recognition strategy and report a new class of mMRI probes for enhanced imaging of metastatic cancer. This probe is designed by covalently conjugating Gd-chelate with phenylboronic acid and an aptamer via an affordable polymerization chemistry to concurrently target two different cell-membrane receptors that are commonly overexpressed and highly implicated in both tumorigenesis and metastasis. Moreover, the polymerization chemistry allows the probe to contain a bunch of targeting ligands and signal reporters in a single chain, which not only leads to more than 2-fold enhancement in T1 relaxivity at 1.5 T compared to the commercial contrast agent but also enables it to actively target tumor cells in a multivalent recognition manner, contributing to a much higher imaging contrast than single-receptor targeted probes and the commercial agent in mouse models with lung metastases, yet without inducing systemic side effects. We expect this study to offer a useful molecular tool to promote transformable applications of mMRI and a better understanding of molecular mechanisms involved in cancer development.


Assuntos
Meios de Contraste , Neoplasias , Camundongos , Animais , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos
7.
Int J Nanomedicine ; 19: 1645-1666, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406599

RESUMO

Purpose: In this study, a detailed characterization of a rabbit model of atherosclerosis was performed to assess the optimal time frame for evaluating plaque vulnerability using superparamagnetic iron oxide nanoparticle (SPION)-enhanced magnetic resonance imaging (MRI). Methods: The progression of atherosclerosis induced by ballooning and a high-cholesterol diet was monitored using angiography, and the resulting plaques were characterized using immunohistochemistry and histology. Morphometric analyses were performed to evaluate plaque size and vulnerability features. The accumulation of SPIONs (novel dextran-coated SPIONDex and ferumoxytol) in atherosclerotic plaques was investigated by histology and MRI and correlated with plaque age and vulnerability. Toxicity of SPIONDex was evaluated in rats. Results: Weak positive correlations were detected between plaque age and intima thickness, and total macrophage load. A strong negative correlation was observed between the minimum fibrous cap thickness and plaque age as well as the mean macrophage load. The accumulation of SPION in the atherosclerotic plaques was detected by MRI 24 h after administration and was subsequently confirmed by Prussian blue staining of histological specimens. Positive correlations between Prussian blue signal in atherosclerotic plaques, plaque age, and macrophage load were detected. Very little iron was observed in the histological sections of the heart and kidney, whereas strong staining of SPIONDex and ferumoxytol was detected in the spleen and liver. In contrast to ferumoxytol, SPIONDex administration in rabbits was well tolerated without inducing hypersensitivity. The maximum tolerated dose in rat model was higher than 100 mg Fe/kg. Conclusion: Older atherosclerotic plaques with vulnerable features in rabbits are a useful tool for investigating iron oxide-based contrast agents for MRI. Based on the experimental data, SPIONDex particles constitute a promising candidate for further clinical translation as a safe formulation that offers the possibility of repeated administration free from the risks associated with other types of magnetic contrast agents.


Assuntos
Aterosclerose , Compostos Férricos , Ferrocianetos , Nanopartículas de Magnetita , Placa Aterosclerótica , Coelhos , Ratos , Animais , Meios de Contraste/química , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Óxido Ferroso-Férrico , Nanopartículas de Magnetita/química , Aterosclerose/induzido quimicamente , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Imageamento por Ressonância Magnética/métodos
8.
Bioconjug Chem ; 35(2): 265-275, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340041

RESUMO

Despite significant progress in cancer imaging and treatment over the years, early diagnosis and metastasis detection remain a challenge. Molecular magnetic resonance imaging (MRI), with its high resolution, can be well adapted to fulfill this need, requiring the design of contrast agents which target specific tumor biomarkers. Netrin-1 is an extracellular protein overexpressed in metastatic breast cancer and implicated in tumor progression and the appearance of metastasis. This study focuses on the design and preclinical evaluation of a novel Netrin-1-specific peptide-based MRI probe, GdDOTA-KKTHDAVR (Gd-K), to visualize metastatic breast cancer. The targeting peptide sequence was identified based on the X-ray structure of the complex between Netrin-1 and its transmembrane receptor DCC. Molecular docking simulations support the probe design. In vitro studies evidenced submicromolar affinity of Gd-K for Netrin-1 (KD = 0.29 µM) and good MRI efficacy (proton relaxivity, r1 = 4.75 mM-1 s-1 at 9.4 T, 37 °C). In vivo MRI studies in a murine model of triple-negative metastatic breast cancer revealed successful tumor visualization at earlier stages of tumor development (smaller tumor volume). Excellent signal enhancement, 120% at 2 min and 70% up to 35 min post injection, was achieved (0.2 mmol/kg injected dose), representing a reasonable imaging time window and a superior contrast enhancement in the tumor as compared to Dotarem injection.


Assuntos
Biomarcadores Tumorais , Neoplasias de Mama Triplo Negativas , Camundongos , Humanos , Animais , Sondas Moleculares , Netrina-1 , Simulação de Acoplamento Molecular , Meios de Contraste/química , Peptídeos , Imageamento por Ressonância Magnética/métodos
9.
Anal Chem ; 96(8): 3318-3328, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38355404

RESUMO

Contrast-enhanced magnetic resonance imaging (CE-MRI) is a promising approach for the diagnosis of kidney diseases. However, safety concerns, including nephrogenic systemic fibrosis, limit the administration of gadolinium (Gd)-based contrast agents (GBCAs) in patients who suffer from renal impairment. Meanwhile, nanomaterials meet biosafety concerns because of their long-term retention in the body. Herein, we propose a small-molecule manganese-based imaging probe Mn-PhDTA as an alternative to GBCAs to assess renal insufficiency for the first time. Mn-PhDTA was synthesized via a simple three-step reaction with a total yield of up to 33.6%, and a gram-scale synthesis can be realized. Mn-PhDTA has an r1 relaxivity of 2.72 mM-1 s-1 at 3.0 T and superior kinetic inertness over Gd-DTPA and Mn-EDTA with a dissociation time of 60 min in the presence of excess Zn2+. In vivo and in vitro experiments demonstrate their good stability and biocompatibility. In the unilateral ureteral obstruction rats, Mn-PhDTA provided significant MR signal enhancement, enabled distinguishing structure changes between the normal and damaged kidneys, and evaluated the renal function at different injured stages. Mn-PhDTA could act as a potential MRI contrast agent candidate for the replacement of GBCAs in the early detection of kidney dysfunction and analysis of kidney disease progression.


Assuntos
Manganês , Insuficiência Renal , Humanos , Ratos , Animais , Manganês/química , Gadolínio DTPA/química , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química , Rim/diagnóstico por imagem
10.
J Colloid Interface Sci ; 663: 467-477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38422973

RESUMO

HYPOTHESIS: The development of bimodal imaging probes represents a hot topic of current research. Herein, we deal with developing an innovative bimodal contrast agent enabling fluorescence imaging (FI)/magnetic resonance imaging (MRI) and, simultaneously, consisting of biocompatible nanostructures. Optimized synthesis of advanced protein-embedded bimetallic (APEBM) nanocomposite containing luminescent gold nanoclusters (AuNC) and superparamagnetic iron oxide nanoparticles (SPION), suitable for in vivo dual-modal FI/MR imaging is reported. EXPERIMENTS: The APEBM nanocomposite was prepared by a specific sequential one-pot green synthetic approach that is optimized to increase metals (Au, Fe) content and, consequently, the imaging ability of the resulting nanostructures. The protein matrix, represented by serum albumin, was intentionally chosen, and used since it creates an efficient protein corona for both types of optically/magnetically-susceptible nanostructures (AuNC, SPION) and ensures biocompatibility of the resulting APEBM nanocomposite although it contains elevated metal concentrations (approx. 1 mg·mL-1 of Au, around 0.3 mg·mL-1 of Fe). In vitro and in vivo imaging was performed. FINDINGS: Successful in vivo FI and MRI recorded in healthy mice corroborated the applicability of the APEBM nanocomposite and, simultaneously, served as a proof of concept concerning the potential future exploitation of this new FI/MRI bimodal contrast agent in preclinical and clinical practice.


Assuntos
Meios de Contraste , Nanocompostos , Animais , Camundongos , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Nanocompostos/química , Imagem Óptica
11.
Adv Drug Deliv Rev ; 207: 115200, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364906

RESUMO

Nanoscale contrast agents have emerged as a versatile platform in the field of biomedical research, offering great potential for ultrasound imaging and therapy. Various kinds of nanoscale contrast agents have been extensively investigated in preclinical experiments to satisfy diverse biomedical applications. This paper provides a comprehensive review of the structure and composition of various nanoscale contrast agents, as well as their preparation and functionalization, encompassing both chemosynthetic and biosynthetic strategies. Subsequently, we delve into recent advances in the utilization of nanoscale contrast agents in various biomedical applications, including ultrasound molecular imaging, ultrasound-mediated drug delivery, and cell acoustic manipulation. Finally, the challenges and prospects of nanoscale contrast agents are also discussed to promote the development of this innovative nanoplatform in the field of biomedicine.


Assuntos
Meios de Contraste , Sistemas de Liberação de Medicamentos , Humanos , Meios de Contraste/química , Ultrassonografia/métodos , Sistemas de Liberação de Medicamentos/métodos , Imagem Molecular
12.
ACS Nano ; 18(6): 4783-4795, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301134

RESUMO

Contrast-enhanced magnetic resonance imaging (CE-MRI) of acute kidney injury (AKI) is severely hindered by the poor targeting capacity and potential toxicity of current contrast agents. Herein, we propose one-step fabrication of a bovine serum albumin@polydopamine@Fe (BSA@PDA@Fe, BPFe) nanoprobe with self-purification capacity for targeted CE-MRI of AKI. BSA endows the BPFe nanoprobe with renal tubule-targeting ability, and PDA is capable of completely inhibiting the intrinsic metal-induced reactive oxygen species (ROS), which are always involved in Fe/Mn-based agents. The as-prepared nanoprobe owns a tiny size of 2.7 nm, excellent solubility, good T1 MRI ability, superior biocompatibility, and powerful antioxidant capacity. In vivo CE-MRI shows that the BPFe nanoprobe can accumulate in the renal cortex due to the reabsorption effect toward the serum albumin. In the AKI model, impaired renal reabsorption function can be effortlessly detected via the diminishment of renal cortical signal enhancement. More importantly, the administration of the BPFe nanoprobe would not aggravate renal damage of AKI due to the outstanding self-purification capacity. Besides, the BPFe nanoprobe is employed for CE-MR angiography to visualize fine vessel structures. This work provides an MRI contrast agent with good biosafety and targeting ability for CE-MRI of kidney diseases.


Assuntos
Injúria Renal Aguda , Indóis , Polímeros , Humanos , Meios de Contraste/química , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
13.
Sci Prog ; 107(1): 368504241228076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332327

RESUMO

X-ray computed tomography (CT) and magnetic resonance (MR) imaging are essential tools in modern medical diagnosis and treatment. However, traditional contrast agents are inadequate in the diagnosis of various health conditions. Consequently, the development of targeted nano-contrast agents has become a crucial area of focus in the development of medical image-enhancing contrast agents. To fully understand the current development of nano-contrast agents, this review provides an overview of the preparation methods and research advancements in CT nano-contrast agents, MR nano-contrast agents, and CT/MR multimodal nano-contrast agents described in previous publications. Due to the physicochemical properties of nanomaterials, such as self-assembly and surface modifiability, these specific nano-contrast agents can greatly improve the targeting of lesions through various preparation methods and clearly highlight the distinction between lesions and normal tissues in both CT and MR. As a result, they have the potential to be used in the early stages of disease to improve diagnostic capacity and level in medical imaging.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Tomografia Computadorizada por Raios X/métodos , Nanotecnologia/métodos
14.
J Mater Chem B ; 12(10): 2486-2493, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38372696

RESUMO

Enhanced magnetic resonance imaging (MRI) has important clinical value in the diagnosis of tumors. Much effort has been made to improve the relaxivity and specificity of contrast agents (CAs) in tumor diagnosis over the past few decades. However, there is still a lack of CAs which not only enhance the signal intensity of tumors rather than surrounding tissues in MRI but also maintain a high signal intensity prolonged for a long time. Herein, we synthesized a dual-targeted CA, RGD-(DOTA-Gd)-TPP (RDP), in which RGD is used to target the αvß3 integrin receptor overexpressed in tumor cells and TPP is used to bind to a mitochondrion further. The structure of RDP was characterized and its properties, such as relaxivity and biosafety, were measured and in vitro and in vivo MRI assays were carried out. It has been proven that RDP has higher relaxivity of aqueous solution than Magnevist used in clinics. Moreover, RDP achieved higher signal intensity and a longer signal duration in tumor imaging. Therefore, RDP can be applied as the potential dual-targeted MRI CA for clinical tumor diagnosis.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Meios de Contraste/química , Neoplasias/diagnóstico por imagem , Gadolínio DTPA , Imageamento por Ressonância Magnética/métodos , Oligopeptídeos
15.
ChemMedChem ; 19(8): e202300521, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38246874

RESUMO

Magnetic resonance imaging (MRI) is a non-invasive molecular imaging tool being extensively employed in clinical and biomedical research for the detection of a broad spectrum of diseases. This technique offers remarkable spatial resolution, good tissue penetration and a high soft tissue contrast. Contrast agents (CAs) have been regularly used in MRI tests to enhance the resolution of MR images and to visualize the diseased sites in the body. In the past years, considerable efforts have been devoted towards developing new theranostic MRI agents that can be tailored to integrate the targeting and therapeutic functions in a single agent. In this review, we have underlined the role of the MRI CAs in the developing field of 'theranostics' and their recent applications in the combined imaging and therapy of different types of tumors. In addition, this review also outlines the different categories of MRI CAs and their comprehensive classification based on different criteria such as chemical composition, relaxation mechanism and biodistribution with clinically relevant examples.


Assuntos
Meios de Contraste , Neoplasias , Humanos , Meios de Contraste/química , Medicina de Precisão , Distribuição Tecidual , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica
16.
Nanoscale ; 16(7): 3729-3737, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294340

RESUMO

Lanthanide-based macrocycles are successfully incorporated into hybrid polyionic complexes, formed by adding a mixture of zirconium ions to a solution of a double-hydrophilic block copolymer. The resulting nanoobjects with an average radius of approximately 10-15 nm present good colloidal and chemical stability in physiological media even in the presence of competing ions such as phosphate or calcium ions. The final optical and magnetic properties of these objects benefit from both their colloidal nature and the specific properties of the complexes. Hence these new nanocarriers exhibit enhanced T1 MRI contrast, when administered intravenously to mice.


Assuntos
Meios de Contraste , Nanoestruturas , Animais , Camundongos , Meios de Contraste/química , Luminescência , Imageamento por Ressonância Magnética/métodos , Polímeros , Íons
17.
J Biosci Bioeng ; 137(2): 134-140, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38195341

RESUMO

A biocompatible macromolecule-conjugated gadolinium chelate complex (PAV2-EDA-DOTA-Gd) as a new liver-specific contrast agent for magnetic resonance imaging (MRI) was synthesized and evaluated. An aspartic acid-valine copolymer was used as a carrier and ethylenediamine as a chemical linker, and the aspartic acid-valine copolymer was covalently linked to the small molecule MRI contrast agent Gd-DOTA (Dotarem) to synthesize a large molecule contrast agent. In vitro MR relaxation showed that the T1-relaxivity of PAV2-EDA-DOTA-Gd (13.7 mmol-1 L s-1) was much higher than that of the small-molecule Gd-DOTA (4.9 mmol-1 L s-1). In vivo imaging of rats showed that the enhancement effect of PAV2-EDA-DOTA-Gd (55.37 ± 2.80%) on liver imaging was 2.6 times that of Gd-DOTA (21.12 ± 3.86%), and it produced a longer imaging window time (40-70 min for PAV2-EDA-DOTA-Gd and 10-30 min for Gd-DOTA). Preliminary safety experiments, such as cell experiments and tissue sectioning, showed that PAV2-EDA-DOTA-Gd had low toxicity and satisfactory biocompatibility. The results of this study indicated that PAV2-EDA-DOTA-Gd had high potential as a liver-specific MRI contrast agent.


Assuntos
Meios de Contraste , Compostos Heterocíclicos , Compostos Organometálicos , Polímeros , Ratos , Animais , Meios de Contraste/química , Gadolínio , Ácido Aspártico , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Valina
18.
Analyst ; 149(4): 1169-1178, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38205835

RESUMO

With the rapid development of nanotechnology and biomedicine, numerous gadolinium (Gd)-based nanoparticle MRI contrast agents have been widely investigated. Due to the unique physicochemical properties of nanoparticles and the complexity of biological systems, the biosafety of Gd-based nanoparticle MRI contrast agents has been paid more and more attention. Herein, for the first time, we employed an ultra-high performance liquid chromatography-electrospray ionization quadrupole time-of-flight/mass spectrometry (UPLC-ESI-QTOF/MS)-based metabolomics approach to investigate the potential toxicity of Gd-based nanoparticle MRI contrast agents. In this work, NaGdF4 and PEG-NaGdF4 nanoparticles were successfully constructed and selected as the representative Gd-based nanoparticle MRI contrast agents for the metabolomics analysis. Based on the results of metabolomics, more metabolic biomarkers and pathways were identified in the NaGdF4 group than those in the PEG-NaGdF4 group. Careful analysis of these metabolic biomarkers and pathways suggested that NaGdF4 nanoparticles induced disturbance of pyrimidine and purine metabolism, inflammatory response, and kidney injury to a certain extent compared with PEG-NaGdF4 nanoparticles. These results indicated that Gd-based nanoparticle contrast agents modified with PEG had better biosafety. Additionally, it was demonstrated that the discovery of characteristic metabolomics biomarkers induced by nanoparticles would provide a new approach for biosafety assessment and stimulate the development of nanomedicine.


Assuntos
Meios de Contraste , Nanopartículas , Meios de Contraste/toxicidade , Meios de Contraste/química , Contenção de Riscos Biológicos , Gadolínio/química , Nanopartículas/toxicidade , Nanopartículas/química , Imageamento por Ressonância Magnética/métodos , Biomarcadores
19.
Nanomedicine (Lond) ; 19(4): 303-323, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38270934

RESUMO

Background: Superparamagnetic iron core iron oxide shell nanocubes have previously shown superior performance in magnetic resonance imaging T2 contrast enhancement compared with spherical nanoparticles. Methods: Iron core iron oxide shell nanocubes were synthesized, stabilized with dimercaptosuccinic acid (DMSA-NC) and physicochemically characterized. MRI contrast enhancement and biocompatibility were assessed in vitro. Results: DMSA-NC showed a transverse relaxivity of 122.59 mM-1·s-1 Fe. Treatment with DMSA-NC did not induce cytotoxicity or oxidative stress in U-251 cells, and electron microscopy demonstrated DMSA-NC localization within endosomes and lysosomes in cells following internalization. Global proteomics revealed dysregulation of iron storage, transport, transcription and mRNA processing proteins. Conclusion: DMSA-NC is a promising T2 MRI contrast agent which, in this preliminary investigation, demonstrates favorable biocompatibility with an astrocyte cell model.


MRI is a powerful tool used in the diagnosis of cancer, strokes and other injuries. An MRI scan can be improved with the use of iron oxide nanoparticles, which enhance the contrast of the image. In this study we have developed cube-shaped iron nanoparticles (nanocubes), which have been previously shown to be more effective at inducing contrast. We demonstrated that iron-based nanocubes do not damage or induce stress in cells and work effectively as an MRI contrast agent. We further analyzed how the nanocubes may affect cell functioning by investigating changes to protein levels in the cells. The results of this study are promising steps towards using iron-based nanocubes as a tool to improve the clarity of MRI scans for medical imaging and diagnosis. Future work must determine whether these nanocubes work effectively and safely in an animal model, which is a critical step in progressing to their use in clinical settings.


Assuntos
Glioblastoma , Nanopartículas de Magnetita , Humanos , Ferro , Nanopartículas de Magnetita/química , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Proteômica , Compostos Férricos/química , Linhagem Celular , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Succímero/química
20.
ACS Nano ; 18(3): 2091-2104, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38212302

RESUMO

Biopsy is the clinical standard for diagnosing lymph node (LN) metastasis, but it is invasive and poses significant risk to patient health. Magnetic resonance imaging (MRI) has been utilized as a noninvasive alternative but is limited by low sensitivity, with only ∼35% of LN metastases detected, as clinical contrast agents cannot discriminate between healthy and metastatic LNs due to nonspecific accumulation. Nanoparticles targeted to the C-C chemokine receptor 2 (CCR2), a biomarker highly expressed in metastatic LNs, have the potential to guide the delivery of contrast agents, improving the sensitivity of MRI. Additionally, cancer cells in metastatic LNs produce monocyte chemotactic protein 1 (MCP1), which binds to CCR2+ inflammatory monocytes and stimulates their migration. Thus, the molecular targeting of CCR2 may enable nanoparticle hitchhiking onto monocytes, providing an additional mechanism for metastatic LN targeting and early detection. Hence, we developed micelles incorporating gadolinium (Gd) and peptides derived from the CCR2-binding motif of MCP1 (MCP1-Gd) and evaluated the potential of MCP1-Gd to detect LN metastasis. When incubated with migrating monocytes in vitro, MCP1-Gd transport across lymphatic endothelium increased 2-fold relative to nontargeting controls. After administration into mouse models with initial LN metastasis and recurrent LN metastasis, MCP1-Gd detected metastatic LNs by increasing MRI signal by 30-50% relative to healthy LNs. Furthermore, LN targeting was dependent on monocyte hitchhiking, as monocyte depletion decreased accumulation by >70%. Herein, we present a nanoparticle contrast agent for MRI detection of LN metastasis mediated by CCR2-targeting and demonstrate the potential of monocyte hitchhiking for enhanced nanoparticle delivery.


Assuntos
Meios de Contraste , Linfonodos , Animais , Camundongos , Humanos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Meios de Contraste/química , Monócitos , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Terapia de Alvo Molecular , Imageamento por Ressonância Magnética/métodos , Receptores de Quimiocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...